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ABSTRACT

The problem of electromasgnetic radiation and scattering from perfectly
conducting bodies of revolution of arbitrary shape is considered. The math-
ematical formulation is an integro-differential equation, obtained from the
i . potential integrals plus boundary conditions at the body. A solution is
effected by the metnod of moments, and the results are expressed in terms
of generalized network parameters. A computer program for computing the
generalized impedance matrix of an arbitrary body of revclution is included.

The expansion functions chosen for the moment solutions are harmonic
L in ¢ {azimuth angle) and subsectional in t (contour length variable). Because

of rotational symmetry, the solution bacomes a Fourier series in {J, each term

of which is uncoupled to every other term. Hence, the problem reduces to a
. set of independent modes, one for each harmonic term.

Illustrative computations are given for radiation from apertures and
plane-wave scattering from bodies of revolution. The impedance elements,
currents, radiation patterns, and scattering patterns for a conducting sphere

s are computed both from the general program gnd from the classical eigenfunction
solution. The agreement obtained serves to check the general program. Sim-
ilar computations for a cone-sphere illustrate the application of the general

program to problems not solvable by classical methods.
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I. INTRODUCTION

Determination of the behavior of a conducting hody in a known impressed
field is a fundamental problem of applied electromagnetic theory. Specific
examples are scattering by conducting objects and radiation from conducting
antennas. A general procedure for tr:ating such problems is given by the

[1,2]

method of moments. This is a procedure for reducing the functional

problem to a finite dimensional matrix problem. In electromagnetic theory,

Id

(3]

the resultant matrices can be identified as generalized network parameicrs.
Once the generalized impedence matrix of a body is known, the behavior of
that body for arbitrary excitation is easily calculated by matrix manipula-
tions. Furthermore, > effect of impedance loading can be accounted for by
constraints on the matrix equations.[a’k’5]
The problem is formulated in the conventional way as follows. Let Ei
denote the known impressed field and Es the scattered field due to currents

on the body. Then the total field E is the sum of the impressed and

scattered fields, that is,

E=f +§ (1

The scattered field can be expressed in terms of a vector sotential A and

scalar potential ¢ as

E --ja-W (2)

e-ij )
A =u g ds (3)

S .
e IR as (u
% TR - )
S

where
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Here S is the surface of the conductor, R is the distance from a source point
to the field point, J is the surface current on S, and ¢ is the surface

charge on S. The current and charge are related by the equation of continuity
v J=-ju (5)

The boundary condition requires that the tangential component of total E

vanish on S. Hence,
i s
Eten = “Etan (6)

where the subscript tan denotss tangential component on S. The problem can

now be stated succinctly as

L) = B, (1)

where L is the integro-differential operator

L(1) = [ju + B, (8)

an

A solution of (7) gives the current J on 5. Usually we are interested in
some functional of J, which can be computed once J is kncwn.

This report considers the special case of bodies which are rotationally
symmetric about an axis. Because of this symmetry a Fourier series expansion
ir. the angle of rotational symmetry reduces the problem to a system of inde-
pendent modes. This is important from the standpoint of computation, because
it is faster to invert several small matrices instead of one large one. The
particular case of scattering by conducting bodies of revolution has been

(6]

treated previously by Andreasen. His solution is conceptually similar to

ours, but differs in detail.

PN [, —_— = e e




II. METHOD OF SOLUTION

To effect ~» ~~'*icn of (7} we use Lue mewuod ol moments, which is

(1,2]

closely related to Galerkin's method. This procedure approximates (7)

by a matrix equation, which cen then be inverted by known algorithms. The

(3]

matrix so obtained is a generalized impedance matrix for the body. The

excitation of the body is represented by a voltage matrix, and the resultant
current on the bedy is represented by a current matrix.

For the method of moments, let the inner product be defined as
we- @b e (9)
S

where W and J are tangential vectors on S. A set of expansion functions

fij] is next defined, and the current on S approximated by
= I. J. 16
L E 5 4 (10)
J

where Ij are constants to be determined. Equation (10) is substituted into

(7), which, because of the linearity of L, reduces to
i
E I, LI = B (11)
J

A set of testing functions {K,} is defined, and the inner product of (11)

with each Ei is taken. The result is

le <Ei’ LJ.J->= <El’ Ei> (]2)
J




i=1,2,3... . The subscript tan has been dropped from El because the iuner
product involves only tangential components. We now define the generalized

network matrices

(2] = (<, ©y >] (13)

(V] = (<, B >] (1)

(1) = (1) (15)
and rewrite the set (12) as

[z] (1] = [V] (16)

[2z] is the generalized impedance matrix, and [Y] = [2]7" is the generalized

admittance matrix. The inverse of (16)
(1} = [¥] [v] (17)

gives the coefficients Ij of the current expsnsion (10), and hence is an
approximate solution to the problem.

The impedance elements of (13) are explicitly

2 = §§S B - (J + B, as (18)

where we have used (8) and (9). The subscript j denotes that éj and ¢j
are the potentials due to J, and oj. If the two-dimensional divergence
oJ

theorem 1s applied to the vector ®W. on a closed surface, the following

%_@-y_ids=-§,§¢y_-_wids (19)

S S

identity results:




4 e

If W is thought of as a current, the charge associated with it is

R A (20)

—

€

Now (18) can be written as

zij=jw§£ (i, TAytoy <bj)ds (21)

Equation {21) is more convenient for computation than (18) because the
gradient operation on $ has been eliminated.

So far the discussion has been for an arbitrary conducting body.
Henceforth we restrict consideration to surfaces S generated by revolving
a2 plane curve about the z axis. The surface and coordinate system are shown
in Figure 1. Here p,¢,z are the usual cylindrical cocrdinate variables, and
t is a length variable along the curve generating S. We desire the expan-
sion (10) to be general enough to approximate an arbitrary J on S. Hence,
independent sets of functions are defined as

,J:;J. =0, fj(t) e‘jm¢

| (22)
£y =y 150 I

where Et and n¢ are unit vectors t-directed and ¢-directed, respectively.

We have chosen the f. in both sets to be the same, but it is not necessary

J

to do so. The current expansion (10) now becomes
E t g ¢
= I + I, 2
o (mj’zmj ma‘zmd) (23)

For testing functions, choose
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Figure 1. Body of revolution and coordinate system.
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which differ from (22) only in the sign of the exponent. The En are orthogonal

tod, m # n, over O to 2n on ¢, and aiso to L

4

(the field from ,lm). Hence,
a.l impedance elements are zero except those for which m = n, and each mode
can be treated separately. This is the major simplification introduced by
the rotational symmetry of the body.

The use of (22) and (24) to evaluate the elements of (21; results in

the partitioned matrix equation

7 ] Tab] o

i n n
G' 1
: 2 = (25)
ts g¢. #s ¥
[zn i {zn 3_i' L{In,j [vn]
Here the elements of the Z submatrices are
Tt T t
= <W” >
(2,755 = oy Ty
Wy _ ot ¢
(Zn )ij - q—!.nir LJ'n,j
(26)
g t

CEN

IR Mg

Ie |
(Z?)' j qﬁi’ Loy

1J

~he #lements of the V submatrices are




t t i
(vn)i = <Eni’ E¥>
| (21)
(V?;)i = <Eg13 §1>

and the elements of the I submatrices are the coefficients in (23). Note

that, for N terms in the Fourier series on ¢, there are N sets of matrix

equations (25).
The solution to (25) can also be written in partitioned form as
(ve1] et ] [

n n n n

(28)

(9 o || e

The Y submatrices must in general be obtained after inversion of the entire

Z matrix, and are not the inverses of corresponding Z submatrices.

Howzver,
the -n mode matrices are related to the +n mode matrices by
sttt tg ottt <
(vt [Y_n]ql - [t
(29)
ty (499 4Pt (PP
g il 2 o

Hence, only the n > O mode matrices need be inverted. The proof of (29)
follows from the fact that the Z matrices satisfy the same equation (see
next section), and this symmetry survives matrix inv=rsion.

Finally, for an explicit solution we must choose the fi(t)’ the t expan-

sion functions. It is known that subsectional expansions, using pulse functions

or triangle functions, give well-conditioned matrices.[2] The current must be




— T

differentiated to obtain the charge; hence it is preferable to use triangle
functions. TFurthermore, a triangle expansion gives & piecewise~iinear

: . 1
approximation which converges about twice g&s fast as a step approxlmatlon.[ ’2]

Finally, if pJ is expanded in triangles instead of J, the divergence formula

and the ireatment of the end points of t become simpler. Hence, we chose

Vo=
£, (¢

v I

(t-t,) {30)
where T is the triangle funciion

1- it‘: ltf <1
I(t) = (31)
0 [t] > 1

When using these functions, distaace and freguency are scaled so that the ti
are one unit apert. As iu Figure 1, t is zero at the lower pole and N at
the upper vole. There are (¥ 1) triargle functions with peaks at 1,2,3...N-1.
Numerical evaluation ¢ the impedance elements is guite difficult be-
cause of the complexity of the fo:rulas. An approximate evaluation was
obtained by approximating each triaangle f™Martion by four steps. The potential
integrals due to each step are evalusted at th=z center of all steps by a
numerical integration. The secoad integratios, represented by (18), is then
a.vroximated by tne value of the intsyranéd ot thz center of each step,
sumned over the four step approxivatica to the testing triangle. The details
of the solution are gi ren in the next section, and the computer program ard

instructions for using it are given in Appendix A.
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III. EVALUATION OF THE IMPEDANCES

The generalized impedances for a body are given by (21), which can be

written in greater detail as

. ..JkR
ﬁ as' ‘ﬁ ds [J'“ukli : ’IJ+F’E(V' WY - l)]
S S

(32)
This is valid for bodies of arbitrary shape. For boaies of revolution,
N ’\2ﬂ

ds = as j df o(t) (35)

S 0 C
vod=2 & (a3 (34)

P t P W
2 2 - . e

P—=*y/p +p'" - 2pp' cos (F-¢')+ (z-2) (35)

Four types of impedances are defined by (26). To evaluate them, we use (22)

and (24) to obtain *he W - J terms in (32) as

P -_-:(¢") +1 Fo v . LIS
A L AR X O E RO RTES (36)

where p and ¢ represent permutations of t and ¢ The unit vector dot products,

in terms of the body ccordinates defined by Figure 1, are




11
k. © ® = sin v sin v' cos(@-¢') + cos v cos v'
' = ogin v! sin(¢-¢')
M (37)
Eé "W, = sin v sin (§-¢')

4y - g = cos(g-g")

Here v is the angle between the t direction and the z axis, being positive
ir L, points away from the z axis and negative if », points toward it.
Cheniging (@-@') to a new variable, and expressing the sine and cosine terms

of (37) as exponentials, one ¢ integration in (32) can be performed. The

remaining § iategration defines the Green's function.[6]
n e-JxRo
g, = ag % cos nf (38)
0 o

vwhere R is given by (35) with ¢' = 0. With f, given by (30}, the resultant

expressions for the impedance elements (26) are



T T

; :

Lo

[\
8ot
(a4

o

L)
n
OL,—-_)

dt' g dt [J‘cw(t'-i) T(t-3){sin v sian v’ e
0

+ cos v cos v' gn) + == T'(t'~1) T'(t—j)gn]

N N
tg - ' [ s v, Bae1 T By
‘Zn )l.) = _( dt g dt | ~wuT(t'-i) (t-3) sin v 5
0 0
¢ _.r_l_ tier 2 Tlre
* g 1) Te-d) gy
u N . e (39)
(z?;t)ij = g dt’ ( dt [+um(t*-i) 7(t-3) sin v —'311-—2-——9;1
o Yo
n 1.3 t -
" wep T(t'-1) T'(t-J) gn]
i L N s+ g
= ' - 1oi) Ttes) DXL o=l
(2} )i5 = g dat g dt [Jup'r(n i) 7(t-3) >
0 0
2
Soegar T(t7-1) 2(t-J) gn]

Here T' is the derivative of a triangle fuaction

gl, -1<t<0
T(t) = 4d-1, 0<t<1 (40)

|
L2 jt] > 1

which is a pulse doublet. Further evaluatior of (39) is done by numerical
me thods.
The integrations of (39) involve many different integrands, and io re-

duce the number of integrations the following approximatirus are made. For




the t integration, the T function is approximated by four pulses of amplitudes
14, 3/%, 3/k4, 1/4, &s shown in Figure 2(a). The dr:ivative of T is repre-
Sented exactly by four pulses of amplitude 1, 1, -1, -1, as shown in

Figurz 2(b). The functions p: 8in v, and cos v are assumed constant over
each pulse, equal to their values at the midpoint of the puise. For the t!'
integration, the T functicn is approximated by four impulse functions, of
strengths 1/8, 3/8, 3/8,1/8, as shown in Figure 2{a). "he derivative of T

15 approximated by four impulse functions of strengths 1/2, 1/2, -1/2, -1/2,

as shown in Figure 2(b). We now define the numbers

T, = 1/8 Ti = 1/2
W, = 3/8 T = 1/2
2 2 (k1)
T, = 3/8 ! = -
3 3/ T3 1/2
T, = 1/8 T = -1/2
the midpoints of the pulses
t =3+ R2-23 t =g+ =23 (42)
P 2 q 2
and the pulse Green's functions
;4 22
J T3 - -JKR,
Gn=2f dtj d¢eR - cos nff (43)

2 2 2 .
R = '\/u + pp - 2ppp c0s ¢ + (z-zp) (’*“)
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Figure 2. (a) Triangle function (solid), four-pulse aprroximation

e e e e

(dashed), impulse approximation (arrows). (b) Derivative
of triangle fun:tion (solid), four-pulse representation
(dashed), impulse approximation (arrows).

K




T

15

In terms of these definitions and approximations, the matrix elements (39)

reduce to

jo
P\.J
<
|
M -
l\/l ¥
—
Con
+3
L]
P
wn
ot
fa ]
<
n
[
=
<
(]
=
'—J
(]
=3
1
T

+ cos vV cosv G )+ =="TT"G ]
p g n Jwe paq n

4 4 G - G T
t¢ _ i, +1 n-1 n w4
(Zn)ia.— _Z- g_[d,;TT sin v > +w€quGn]
l - Fa
=il {(45)
L o4
= G ,, -G T
¢t _ ‘ n+l n-l - L__BM'
(Zn )iJ = / r +oy TpT sin v, 5 w 7. lq Gn]
p=1 g=1 ¥
4 L
G 2T T
g3y _ § - ntl n-1 _n__p_q~]
(Zn )ij - [Jup T T Jwe fp g ¥n
=1l g=1

Here v v_ are the p and v evaluated at t_ and t_ respectively.
Dp: o’ Dq: 3 P L 3 p y

Finally, we evaluate the Gn of (43) by a combination of analytical and
numerical techniques as follows. The interval ¢ < ¢ < x is divided into M

equal intervals, and (43) approximated by

a2
M I+ -JRR
an € .
G = % cos n¢m \f\ dt =% (46)

where ¢m = (m - %) /M. The Rp of (L6) is evaiuated at @ = ¢r' Define
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Then |Rp - qul < 1/4. If the distance between peaks of the triangle functions
is a tenth of a wavelength, then k]Rp - Rpol < n/20, and exp (~ijp) may be

represented by two terms of its Taylor expansion about qu. This gives

M 3+
2n IRpq Lo 3e(RRe) 4e
G, = g  cos n¢m e at Rp (4€)

For the final integration, we approximate t by a straight line between

t=J+ gé-éand t=g+ gég . Then z and p are linear in t, and the integrand

of (48) can be simplified by completing the square. 'This gives

t_+ /4 >
, M - 5kR ° 1-3k(Jt +d~ - R_)
G ==L cos nd_ e Pa dt = (49)
n M m tT+ 4
m=1 t_ - L/4
o
where
t, = i(zp—zq) cos v, + (pp cos ¢m - Oq) sin ti (50)
2 2 2
@ =R -t 1
o "t (51)

L

The integration of (49) is now straightforward, and one oblains

M
:> cos n¢m f(¢m) (52)

m=1

»]
=]

n
=i

where

™
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2(g ) = P [2(’1+-kn log ———==x - jk (53)
¢m € J Pq) & tl+ﬁ-+_d? JJ

and

1 .
ty=t - f ty =t +§ (54

This completes the evaluation of the impedances.
Some computational details will now be discussed. In (54), if t, is

larger than 1/4 both tl and t_, are positive, but if to is less than 1/4, t

2 1

is negative. In this case the log term of (53) should be replaced by

(ty + V&2 + &) (-1, +72 + &)
2

d

(55)

iog

~

G, is the scalar potential due to a charge distribution on the lateral sur-
face of a frustum. The approximation {46) supposes line charges at ¢m' If
the source point is very close to the field point, the granular nature of the

line charges may be too restrictive. When the source and field points

coincide on the first interval 0 < ¢ < %, the line charge at ¢ = Eﬁ is spread

out into a uniform surface charge. Furthermore, if the surface of this first
p.T

interval is approximated by a plane rectangle c¢f dimension 1/2 by ~%r-,

-y

1/4 M
_ 2. 2
G = -i:— \S\ dy S\ M dx = k‘/;+ + E cos n¢m f(¢m). (5€)
e % 0 Xy m=2
Now, since

) —
5255; [x Tog(y +'V§2 + x°) +y log(x +]/y2 + x2)] - ’ (57)

Xty
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cae can reduce (56) to

2. 2 V[~5“-é 1 s M
{ + + Lty obx -k
G ='i4‘|x log(m:E +y logxro Yoo 1 Y x°+ E cos nft ¢ )
nooeq € \ % o \ ¥ / P - I i
q ' o] ) o} =
(53)
where
p.7
. _ /L e
X0= Y, = /b (59)

A more elaboratz method iavclving a localtized increase in the density of
line charges was attempted but was atandcned when the resslis did nct difler

appreclably from (58).
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IV. COMPUTATION OF IMPEDANCES

Equation (45) for the impedances has been programmed in Fortran IV for
execution on an IBM System/}éo Model 50 computer. Appendix A lists the com-
puter program and all its printed output for the first mode (n=1 in (45))
for a sphere cf radius l% and raaius tc wavelength ratio 0.2. Alsc included
in Appendix A are instructions {'or the use of the computer program along
with some explanatory noties to facilitate possible modifications. 1In the
interest of simplicity, the program is written tc compute one mode at a
time. Input data cons’sts of the mode number, the total length (an integer
determining the sizs of the impedance matrix desired) of the curve that
generates tiae surface S, an integer telling how many times to subdivide the
¢ axis between 0° and 18° for the G, of {52), the wave constant g%, and some
arrays defining the angle between the tangent to the generating curve and
the z axis, the cylindricel coordinate radius p of the generating curve and
z the axial distance from the start of the generating curve at the lower
pole. The output consists of some of the Gn of {(52), the impedance matrix
Z, ané its inverse the admittance ma.rix Y, as explained in Appendix A.

To check the accuracy of the program, the impedance for current on a
sphere has been evaluated by spherical mode exprnsions. The details of the

(13]

solution are given in Mautz's thesis. The final result for any mode

Jng

with e variation on & sphere of radius a ',
o0

@, - E - KTEb.b.+hTMc.c.]

m ‘1] D L n ninj n ninj

(60)
o <]

gty . L [,TE ™ 1

(Zm )ij =J n ni nj n nicnj_l




[
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Lt B
(ém )ij B (“m )Jl
o0
(z¢¢) RN 1 ")\TEC ) ™
m ‘ij zﬁ_»m Drn '""n ninj n i nj
n=|m| N
where
bra(n)(n+1) (n+m)! [
D = (61)
mn (2n+1) (n-m)"

The eigenvalues are given in terms of alternate sphericai ressel functions

as

nj J n J
¢ (63)
T PN
> OF icoc & ]
an = 27a —gm e sin 8 £ (%) du
O
. .th . ) X NP . oy s s
where fj(t) ic tne 3 ¢xpansicn fuiaction as delinecc in gensra' vy {2 ¢ and

in particular by .3¢;. The F in {63%) are the associated Lesendre po_omials.

The evaluation o [ .3) was acne nur-ricaliy.
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Comparison of impedance elements on a sphere of radius 0.2\, using

9 expansion triangles, n = 1 mode.

Impedance | Formula (45) 18 TE and T™ 9 TE and TM
element of Section III modes in {60) modes in (60)
zﬁ 53.46 - 32477. J 53.30 - 31908 53.36 - 3616.5
z;; 26.3 - :768.9 0 26.83 - §701.0 26.83 - i567.9
D 10.2€ + 352.28 10.08 + j52.36 10.08 + 3151.8
-“2%95 57.67 - jeGsl 57.36 - j2236. 57.36 - J1754
Zgg 32.90 + j9.4€7 32.93 + j11.05 32.93 + j9.903
zgff 29.26 - j34.36 29.27 - 334.32 29.27 - j40.57
- {
7; 1565, -~ 354.88 . 1100. - j55.08 321.6 - j55.08
z:? (-1.68 + 3.3h5)x10'l‘ (-2.12 + j.uos)xm'5 (-2.48 + ,j.hOﬁ)xlO'5
;é‘— -37.15 - j27.17 -37.13 - 3527.25 -27.87 - j27.25
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Table 1 shows representative computations for a sphere of radius a = 0.2},
using 9 equispaced triangles. In other words, the expansion functions are
(30) with the t, = 1,2,...,9, and the z axis cuts the sphere at t, = 3 ana 10.
The M appearing in (52) is twenty. The mode chosen is n = 1 in (45), and
correspondingly, m = 1 in (60). Column 1 of Table 1 gives the computation
using the general solution (45) of Section III. Column 2 gives the sclution
using 18 terms of the infinite series (60). Column 3 uses 9 terms cf the
series (60). Notice that the real parts of Ztt and Z¢¢ and the imaginary
part of Zt' are identical for the 18 term and 9 term soluticn of (€0)
and are only slightly different from those of (45). The imaginary parts of
Ztt and Z¢¢ and the real parts of Z¢t and Zt¢ of (&' are converging very
slowly in the modal sclution, but are converging towards the corresponding
parts of the general solution. Z;g is supposed to be zero, and the non zero
values of Z;g in Table 1 are so small that all the significant figures are

probably meaningless. On the basis of comparisons such as Table 1, it

appears that ocur general program is sufficierntly accurate for most purposes.
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V. MEASUREMENT MATRICES

Any linear measurement of the field from a current J on a body S can

be expressed as a linear functional of J, that is

measurement = @: }gr - J ds (64)
S
where E? is a known function. If the excitation-measurement system is viewed
as a two-port system, it can be shown that E? in (64) is the field on S when
the measurement port is excited.[ 5] For a moment solution, the current is

given by a superposition J = Z Ijij , and (64) reduces to
measurement = [R] [I] (65)
where [I] is the matrix (15) and [R] is a measurement row matrix
(R] = [, E™>] (66)

Note the similarity of [R] to the excitation matrix defined by {14). If

the matrix solutiocn (17) is now substituted into (65), one has
measurement = [R][Y1[V] {67)

The symmetry of (67) with respect to [R] and [V] reflects the reciprocity
theorem of electrcmagnetic theory.

For bodies of revolution, the expansion for J can be separated into t
and ¢ directed components, according to (23). It is then convenient to

partition [R] into t and ¢ component terns as




2k
:
(Ry); = Sty B
(68)
(‘Rg)i = <"ngi’ E>

The analogous partition for excitation [V] is given by (27). Now one can re-

write (67) in partitioned form as

measurement = [[RE] [ﬁg]] [th] [YE¢] 1 .[VE}]
(69)
#t -
i | o

wnere the Y submatrices are obtained after the Z matrix is inverted, and are
not the invers=zs of the corresponding Z submatrices.

An important special case is that of radiation field measurement. It

3
E
. has been thown that the radiation field from currents J on S is given by[8 ]
. = ""[(_-&E -;'kr ro T
E-u=-:"c¢ (rl (1] (70)
] where the elements of [R] are given by (66) with
# .-E‘,r =u E-J'}S r (71)

This is a unit plane wave wi'h polarization vector u and propagation ve:tor k.

=~

An arbitrary plane wave is a superposition of two orthogonal components, say

; Ee and §¢. Hence, one can treat the general case as two aprlications of (71),
one for u = u., and the other for u = g¢f To distinguish between the two cases

let
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te t r
(Rn >1 = <Qni’ E9>
(72)
go, _ < f T
(B )s = <ty Bg”
for the @-polarized case, and
(Rt¢) _<t
n 1 T oy ~¢>
(73)

(Rg¢)i = Qgi’ By

for the @-polarized case.
The excitation matrices can now be evaluated as follows. Let
Jk(p sin ®_cos § + z cos 6_)
vy T by r
%:Eee (7)+)
where Gr and ¢r = O are the angles to the field point of measurement. The

dot products required in (72) are given by

R gg = cos 8 sin v cos ¢ - sin 6§ cos v
r (73)
"R = - cos &_ sin ¢
E¢ e r
Using the integral formula for Bessel functions
2n
J (o) = iﬁ o~Jp cOs ¢ e‘3n¢ ag (76)
n‘P’/ = ox
G
one cen now evaluate the ¢ integrations in ((g), obtaining
N jkz cos © J_ ,=Jd
te n+l r . ntl "n-1
(Rn )i = 21 g dt p fi(t) € [cos 6, sin v ——5—
0
+¢ I3 -
J sin Qr cos Vv Jnj
N
o~ jkz cos © J .t (717)
go, _ .+l o Y r n+l “n-1 X
(Rn )i = =2nj j dt p fi(,) e cos 6 23

c
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where
J, = Jn(kp sin er) (78)
Similarly, to evaluate (73), let

. r jk(p sin 6, cos @ + z cos er)

E¢=u¢e (79)

The required dot-products are then

r . .
W 2¢ = sin v sin ¢
(80)
r
©u. = cos
by T g = cos
and the ¢ integrations in (73) can be performed. The result is
tg nt+l ' Jkz cos er Jn+l+Jr-l
s / . 3
(Rn )i = 2nj dt p fi‘t) e sin v~——§3-———
© (81)
N
jkz cos 6_ J_,.=J
9y - ony™tl 0 e r Tntln-1
(Rn )i = 2n} dt p fi(u) e >
0

where (78) again applies. For computation, the p fi(t) in (77) and (81)

were the triangle functions (31). The remaining integrals must be evaluated
numerically for bodies of arbitirary contour. In general, Rﬁe and Rg¢ are

even in n, while Rgg and R;¢ are odd in n. As shown by (22) and (24), the
excitation matrix [V] differs from the measurement matrix [R] only by the sign

of n. Hence, for plane-wave excitation of the body,

(voh); =®E1), (82)
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where pq represents 8, ¢0, tf, or ¢@. Equation (82) means that the v, are
given by (77) and (81) with n replaced by -n and 6. by 6,, and does not imply
equality of excitation and measurement.

For axial incidence of plane waves, equations {77) and (81) reduce

considerably. In this case e = n and all R = 0 except
e, _ ( Jkz
(R1 )i = ( 1)y =7 ) at p £, (t) e sin v
0]
(R?ie)l = -(R??)l = Jn’ j dt o] f ) E-sz
0
t4
&%), = -&7), - 5@, (83)
&), = #9), - -3®),

Hence, only the n = -1 and n = +1 modes are excited by axially incident plane

waves.
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VI. APFRTURE ANTENNAS

An aperture antenna is a radiating system consisting of a conducting
body with apertures through which electromagnetic energy is supplied. For
analysis purposes, it is assumed that the tangential electric field gt is
known over the aperture. It is, of course, zero over the conducting body.
This known field Et corresponds to gi = -gi in the general analysis of
Section I. Figure 3 represents the general problem, showing the body S,
the aperture, and radius vector to a distant field print.

In terms of a mcment solution, the excitation is the known Et in the
aperture, from which the excitati»n matrix may be computed by (14) by setting
Ei = —Et' In general, this results in an excitation of many ejn¢ modes, each

of which ~an be treated separately. The current on S for each mode is found

by inverting (25), and the total current is the sum of the modal currents,

1= E (11 (v 1 v,] (84)

n

that is

where ndenotes the mode. Similarly, the radiation field fcr each mode is
found from (70), and the total radiation field is the sum of the modal

fields, that is
Poo i s S Ry ) (v ) (85)
/ n n n
n
where u = 8 or ¢, and n again denotes thc mode.

For simplicity, illustrative computations have been made only for the

case of excitation independent of ¢, which excites only the n = O mede.




23

Z
T 9 r to field
r point
Ef gwen
in aperture |
[
l
conductor — ’
Y

~ {
N

Figure 3. An aperture in a conducting body of revolution.
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This results in a furtner simplificetvion in taat [ ¢J = {Lg 1 =0, that is,
J

~
J

Rl Mt Adhidob bt ALt A
v

there s no coupling between e t-uirected curvents and the @g-direct-d
carrents. From syrwetry conside.ations, ar excitation having only an Et

component produces Cnly a J current, and an excitaticn having only an E¢
(9

e SOF TR RTRR TR R

component produces only a j@ current. Hence, *the problem reduces to two
1 independenu cnes,
X
3 . t Tty ro.2
J, o= ! Y A"
N JC][ 5 led,
; (86)
1
% ¢ PP P
P Y M
E 35 = Logd (271 1)
E for the current, and
:
A L SHUVE S i L RS A B
E e R, ] hc i1 0]
(87)
, B, = Zil mIET (08 [0y [f)
/] Ly c c C

] for the radiation field. The [Yé‘] and (‘g¢] in (86) and (87) are .he inverses
}
of [25) and (2971, respectively
5 4 and LZ77J, respectively.

To check the progran, radiation from anequatorial:y slotted conducting

sphers was computed both by the classical eigenfunction expansion and by the

gene.oal prograrm. Figure L shows the current density on a sphere of radius

a = 0.2~ excited by an E_ = &(e-n/2)/a ir the equatorial slot. This gives

TV R g A SR I
i v

. te c e . . . .
rise to V[ . = on if' t, is on the ejualor, and Zc¢ro otherwise. The eigenfunction
‘e L%
solltion was cumputed using i85 terms of the Fourier series. The real part of

the currean’ converged very rapidiy, and cain be considered as exact. The

wmaginary cart of the current does not converge at the source, and converges
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slowly elsewhere, and hence the imaginary part computed from 18 terms of the
Fourier series is not exaci. As can be seen in Figure %, the N = 10 solution
using the gereral orogram is ir. good agreement with the eigenfunction solution.
Computation of radiation field patterns for the two solutions agreed to within
less tchan cne percent accuracy, and nence are not shown.

Figure 5 shows the current density on a sphere cf radius a = 0.2N excited
by an E¢ = -8(8-n/2)/a in the eguatorial slot. This gives rise to \g¢ = 2n
when tj is on the =quaticn, and zero ctherwise. Again the eigenfunction
solution was compuied using 18 terms cf the Fcurier series, 21d the real part
of the current converged very rapidiy. However, the imaginary part of the
current does not converge. The real part of the current computed from the
N = 10 case of the gencrel rrogran again agree€s well with the <igenfunction
solution. It is difficuit t0 say anything about the imaginary part because
of ihe divergent nature of the solution. Computation of the radiation field
patterns for the to solutions again agreed to within & few (wrecent.

Evidently the radiation patizrn uows not depend strongly on the non-converging
imaginary part of the cuorrens.

Az an examplie of a hedy of more complicated shape, comp..ations were

made for aperturs ¢x

[£]
[
ct
o0
et
’.L
(9]
s}
8}
o]

a cone~-sphere. This body is formed by wedging
a coaducting sphere intc a conducting cone, resuiiing in a shape similar to
that of an ice cream cone. The radius ¢l the sphere is a = Z.2\, and the

cone half angle is ZOO. The aperture is e parrow siot near the cone-to-sphere
junction. Figure 6 shows ‘he current density wher the excitaticn is an
impulsive Et in the slot. A&n ¥ = 20 solvtion is shown, but smalier values of

N give reasonably accurate solutions.
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Figure T shows the same cone-sphere excited by an impulsive Eb in the
1 slot. Again an N = 20 solution is shown, but usable rzsults could be obtained
with a smaller N. Note the extreme osci .latory nature of the imaginary part
of the current. Theoretically, the imaginary part does not converge, as dis-
cussed previously for the sphere.

Figures 8 and 9 show the power gain patterns for the two cone-sphere

excitations discussed above. For a given polarization, the power gain normal-

ized to omnidirectional radiation 1SL9]

v

; bar® ||
4 &‘ = (88)
9 ‘ M Frag
- where n =vp/e and Prad is the power radiated. From (70) and (17), the
numerator of (88) can be expressed as
2 2 1 2
b® |E |2 - len (8] [¥) (V] (89)
. N (10]
In general, the power radiated is given by
P =-Re¢§ Ex . 4 ds = Re (V] [¥] [V] (%0)
rad N:
S

where the elements of the row matrix [V] are

Vi=-§§*'lids (91)

For the excitations used in Figures 8 and 9, only one Vi is nonz=ro, and
~

Vi = Vi = 2n. Hence (90) reduces to a single element of the (Y] matrix. 1In

%
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particular,

where ti is

where again

for Figure 8§,

2

N-1
2 E te tt
= '5:1

2,°]
b Re(Yn )ii

&

the point of excitation. Similarly, for Figure 9,

ti is the point of excitation.

39

(92)

(93)
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VII. PLANE-WAVE SCATTERING

The radar scattering problem cons.sts of a plane wave incident on a
scattering body, plus measurement of the far-zone scattered field. Figure 10
illustrates the geometry of the problem for conducting bodies of revolution.
In general, the incident wave Ei can be expressed as a superposition of the
two orthogonal components E; and Ei, and similarly the far-zone scattered

wave I«f as the superposition of E; and E; These are related by the scattering

matrix [s] of the body according to

- -Jkr A .5
st _ e 66 e¢ i
Ee = m s s E9
(9%)
E; s¢e s¢¢J _E;

The elements of [s] can be expressci as a summation over the modal components

P - Z sﬁq (95)

n

where pg denotes 60, €@, @6, or ¢@f. The scattered field is given by (70),

and hence
S t o tt @ t
sP1 . ot Tptey (4P | 1) e 1| v ]

(96)

SNV I

L

where the R elements are given by (77) or (81), and the V, elements by the
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scatterer

Figure 10. Plane-wave scattering by a conducting body of revolution.
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same roramulas with n replaced by -n and 6r by etv
Radar scatiering data are clien presented i terms of the radur cross

seciion, defired as

=S 4
Bt .
o™ = Lnr ' -< W37
|2 |
1

lad

As indlcaled, o depends both on the received poiurization p and the inciden

polarizaticn 9. It follows from (Sk) and (97) tha< Jnr & given polarization,

An incident wave of arbitrary polarizution can be expressed as the super-
position

3

_El = (‘J.- o, + By C‘¢)E*

o~
()
0
—r

=

4

. 2 ;@ . X
wiere |a |” + la,i® = 1. The matrix
A

{a = | a i 1160)

is c¢alled the pelecization matrix. Let [&t] be the polarization malrix of ine
incident wave when the iransmitiing antenna is excited, and [a' ) be the irans-
pose of ithz polarization matrix of the incident wave when the receiving antenns
is excited. Then the component of scattered field that is polarization-
matched to the receiver is

-ikr .
ES = ‘*T— 1 (5] [a*) & (1c

fomt
~—

and the radar crecss scction is

- - e e - - P T T -

AR e

e
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where [s] is given by (94). Z=Equation {98, is a special -ase of (102).

For simplicity, only excitatlon by axially in-ident plane waves is

considered for computation. Let

which can be considered a ©-polarized plane wave I'rom a transmitter at

{102)

(103)

coordinatcs @, = =, ¢‘ = 0. The axcitation malrix elements are thus given
[%)

i

by the first two eguaiions of (83) witn R replaced by V, n 5y -n, and Gr by Gt

Only the n = +1 modes are present in the excitation, giving rise to only

the same two modes in the current. The syametry relationships

can now te used to obtain the simpler form

(29) and (32)

* ¥
J=»J cos @~ 2¢J¢ sin J (lok)
where
&l
J‘\: = t £ -
NI REN®
=t (105)
LS
9( - &34 o
J 2 ll i ‘.(D)
=1
and f,(p) = T(t—ti)/p. Hence, the current is compietely specified by it:

n = ]} mode coefficients.

To check the program, the current on a sphere excited bty

the nlane wave

(1¢3) was computed both by the classical eigenfurction method and by the

general computer program. Figare 11 shows the magaitudes of J° anda J¢ of (10%)
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for s syhers -f veaius a = G.2Ah, using N = 10 for the general program. The:

¢ ipsatunction esrans.cn converges very rapidly awd can be considered as txact.
Thz curren’ deysity a8 normalited with respect o the inciaent magnetic field
intensity. geoving s dimensionless guaniity which is 2 for a piane conductor
covering the z = ¢ plane. The radar scattering patterns cosputed by the
eigenfuncio” mevheu and by the N = 10 general solution were almost identical,
and are nso zhown.

Figure 12 sncws the current on a cone-sphere excited by a plane wave
axially incident on *he tip. The radius of *he sphere ic again C.2A, which
is the same as used in the antenna examples. Again Jt and J¢ of (104),
normalized with respect to Hi, are piotted. To illustrate convergence, toth
the W = 20 (circles) and the N = 3C (solid line) solutions are plotted. The

E ¢
I7 current converges fairly rapidly, but the J” current converges more slowly.
Even tne ¥ = 30 solution cannot be considered accurate for J¢. Apparently
the rate of convergence is affected by the sharp tip of the cone. For better
convergence one could incliude a term in the curreni expansion to properly
represent *he singularity at *he tip. Hcwever, radar scatltering patterns

are insensitive to small osciilations in the currents, and more accurate
snluticns are not needed in most cases.

Ficure 13 shows the current on the same cone-sphere excited by a plane-
wave axially incident on the spherical end, that is, the end opposite to the
pcint  The above commenis concerning convergen-e apply also to this excitation.

Figures 1% and 15 show radar cross section patterns for tne cone-sphere
excitations corresponding te Figures 12 and 13, resyrectively. The tlols were
made using the N = 2C solution, but the corresponding N = X solution gave

almoct identical results. The only difference occurred in the vicinity of
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forward scattering where a change in o of the order of a few percent was
ovtained. This region is most sensitive tc inaccuracies because all parts
terd o radiate in ghase in the forward direction. All plois are normalized

2 ; R i .
to A° to make them dependent only on length/wavelength dimensions, not on

- . - ee 2 » d
absoiute dimensions. The curves labeled ¢ /N~ are in the ¢ = 0 plane, an
are the radar cross sections measured by a ©-polarized receiver. The curves
- - ¢9 / 2 < . /n i
labeied o' /N are in the § = n/2 plane, and are the radar cross sections
measured by a @-polarized receiver.

Because only the n = 1} and n = -1 modes are present in the excitation,

these are the only modes present in the scattered field. From (95) and the

symmetry relationships (25) and (82) one can show that

0 89
s =2s, cos ¢r
(106)
s¢e = 23 s?g sin ¢
L T
] 86 ge . . ~ o
where §1 and s] are the n = 1 modal solvutions evaluated at ¢r = 0. Henerg,

toom (98) and (106) it follows that the radar cross sections are given by

2
60 _ o 2
o = 16n |s) ! cos” @
(107}
2
o’ = 15x s7 | sin ¢r

Hence, the graphs of Figures 1li and 15 are proporticral to the coefficients

of cos ¢r and sin” ¢r in (107).
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VIII. DISCUSSION

This report develops a solution fcr the electromagnetic behavior of con-
ducting bodies of revolution with arbitrary excitation in terms of generalized

[3]

network parameters. Basically, *his involves the application of a moment
method to the superposition integral representation of the problem. Because
of the rotational symmetry, a Fourier series expension on ¢ is used. To
facilitate the handling of arbitrary body contours, a subsectional expansion
on t iz used. The simplest subsectional function is the pulse function, but
it is not in the domain of the original operator because derivatives must be
taken. The derivative can be replaced by a finite difference approximation,
thereby approximating the operator. However, it was found that difference
approximations did not yield as good accuracy as desired. The next simplest
subsectional function is the triangle function, and this was used for the
general program. Its derivative is a doublet pulse, and hznce no approxima-
tion of the operatcr is necessary.

Three types of singularities are encountered in the general solution:
(a) a singularity in the ccordinate system along tne z axis, (b) singularities
of curvature in the body contour, such as at a cone tip, and (c) singularities
in the excitation. The first type introduces difficulties in the numerical
evaluation cf the impedance elements, bul can be overcome by careful analysis.
The second type could be taken care of by special subroutines at points of
Jdiscontinuity in body curvature, but would be difficult to implement. No
attempt has been made to do this in the general program. The third type of

singularity is impractical to incluie in a general solution, becruse then the
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impedance matrix would depend on the excitation instead of being a function

of the body geometry alone. It could, however, be incorporated intc particular
solutions. For example, the singularity 1. the current at feed point of a
slot-fed antenna can be accounted for by including the proper singularity in
the expansion functions.

If only the radiation and scattering patterns are wanted, but not the
current, then less accuracy is required in the solution. This is because
such patterns are continuous linear functionals of the current, and, as shown
by the caliculus of variations, are accurate tc the second order when the
currents are accurate to the first order. For example, if the current has an
error of the order of ten percent, the radiation field has an error cf the
order of only one percent. Furthermore, the radiation depends primarily on
the current moment pJ instead of the current itself. Hence, inaccuracies at
the poles (p = 0) of the body have little effect on the radiation pattern.
Finally, rapid osciliations in the current about the correct value also have
little effect on the radiation field. They contribute mainly to near-field
stored energy.

The generalized network parameters oi a body are basically a matrix
approximation to the functional operator equation for the problem. Hence, so
long as the computational approximations are valid, one can compute the
response of the body to arbitrary electromagnetic excitation. Aperture
anteﬁnas (Section VI) and plane-wave scattering (Section VII) are but two
examples. Another problem of interest is excitation by current dipoles in
the vicinity of the body. Still more generally, both the excitation and
measurement can be taken in the near-zone if desired. Radiation by loaded

aperture antennas and scattering by loaded scattering antennas can also be
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111
treated by known methods.l'l"']lJ

Other problems can be treated by modifications or extensions of the
theory. For example, the internal resonances of a cavity of revclution can
be found by a procedure similar to that used for waveguides of arbitrary cross
section.[lel The problem of scattering by a homogeneous dielec.ric or magnetic
body of revolution can be treated in terms of equivalent electric and magnetic

surface currents. Hence, an extension to include both electric and magnetic

currents could be used to solve such problems.
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APPENDIX A

THE COMPUTER PROGRAM

This appendix provides a description, in terms cf Fortran IV language,
of the computer program that finds the generalized imp=dance and admittance
matrices for a conducting body of revolution with surfazz S. Section A-1
gives inctructions for using the computer program while Section A-2 gives some
exzlanatory notes tc facilitate possible modifications. Section A-3 lists the
computer program along with the data for the first mode (n=1 in (45)) of a
sphere of radius 10/n and radivs to wavelength ratio 0.2. Section A-4 gives
the printed output for this same data.

A-1 Instructions for using the computer program

The program, written in Fortran iV level G and tested on an IBM System/360
model 50 computer, accepts punched card input data and outputs the generalizer.
impedance and adrmittance matrices via both the orinted line and a direct
access storage device.

The direct access storage device was assigned the data set reference

number L. Statemeni number 1 early in the main program
1 REWIND &

returns the data set number L to the first record if it is not already there.
Each unformated WRITE (4) statement defines a new record on data set number L.
If the first n records have been written previously, it may be desirable to
skip them and start writing on the (n+l) record. This is effected by following
statement 1 with n identical READ (4) statements. There are no such READ (&)

statements in the listing of the program in Sectioa A-3.
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All the punched card data are read eariy in the main program according

to the statements

50 READ (1,51,END=52) NN, N, NPHI, BK
51 FORMAT ‘3I3,Elk.7)
KG = 2%N
61 READ (1,53)(vs(J), J = 1,KG)
62 READ (1,53)(2s(J), J = 1, K3)

65 READ (1:53)(R(J): J=1, KG)

53 FORMAT (10F8.4)

—
e

in that order. According to statement 50, several sets of data may be pro- =i‘
cessed with control going to statement 52 when the data are exhaucted.

Statement 52 is a stop.

NN = the mode number the same as n appearing in (45). NN must be ?
either zero or a positive integer. If NN is large, NPHI must also ';
be large for the numerical integration (45) to be accurate. ;{

N = total length of the generating curve. N is a positive integer.

There will be N-1 expansion functions for the t directed current
and N-1 expansion functions for the ¢ directed current. Conse-
queatly, the Z end Y matrices will be 2%(N-1) by 2*#(N-1). For N
larger than 20, present dimension statements must be altered.
NPHI = the number of equal subdivisions of the ¢ axis from 0° to 180°.

NPHI corresponds to the positive integer M appearing in (46).

n
NPHI

The maximum electrical length corresponding to an excursion

NPHI must be large enough so that * NN is less than a radian.

L
NPHI

in

T TR ?




¢ chould alsc be less than a radian. If NPHI is larger than 40,
present dimension statements must be altered.

BK = propagation constant k appearing in (46). For reliable results,

i % BK should be less than one.
vs{J), 25(J) and R(J) are arrays that descripe the geometry of the sur-
face 5 of revolution. The J indicates evaluation at t = !:éi’ vwhere t is

the.arc length along the generating curve, zero at the lower pole of the body

of revolution. J runs from 1 to 2*N.

VS = the angle (radians) between 1, the unit vector in the t direction
and the axis { z axis) of the body of revolution. VS is positive
vhen 1, is diverging from the z axis and negative otherwise.

ZS = axial distance z from the lower pole

R = distance p from the z axis.

All of the above data are printed after they are read in. Statement 58

58 WRITE (5961‘)(6(1(): K=1, NG)

prints some Gés of equation {52). The Z matrix is printed by

95 WRITE (3,88)(z(X), K = K1,K2)

88 FORMAT (1X, 12G11.h4)

inside DO loops 89 and 90. The impedance matrix is stored columnwise in the
linear array Z. The submatrix (zﬁt)ij of (45) is labeled Z1 and printed
columnwise. The first element of each column begins a new line. For a
column of the submatrix (Z;t)ij the "source point" j is fixed and the "field

point" i runs from the lower pcle to the upper pole. Similarly, Z¢t, Zt¢ and
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.’/.’.¢¢ are labeled Z2, Z3, and Z4 and printed. The impedance matrix is put inte

direct access storage by
33 WRITE (4)(2(1), I =1, N2)

Next, the admittance matrix (inverse of the impedance metrix) is calculated
and put into the same array Z. The admittance matrix is cutputed exactly

as the impedance matrix was. The printing is by
96 WRITE (3,88){(z(K), K = K1,K2)
in DO loops 93 and 92. The direct access data set 4 is written by
34 WRITE (4)(2(T), I = 1, NZ)
Throughout the program, the sequence

CALL CLOCK (I1,I2)
WRITE (3,99) I1,I2
99 FORMAT (1X,217)

appears many times. CLOCK is a subroutine which, perhaps uot available on
all 340 computers, can be called as easily as SIN or COS. The first argument

I3 becomes the time in seconds while the second one I2 gives the year and day.

A-2 Explanatory notes on ihe computer program.

LINEQ(LL,C), the first subroutine to be compiled, accepts an LL by LL
complex matrix stored columnwise in the linear complex array C and returns
the inverse of this LL by LL matrix into the same array C. Of course, the orig-

inal elements of the matrix are destroyed. Although the dummy array C is only

L o T

- i ——————— - n




dimensioned C(1) in the subprogram, all the space of the corresponding array

in the calling sequence in the main program is available. Because of the

statement

DIMENSION LR(58)

T
oo,

T A
[EURLANCL S I B

St it

early in the subroutine, LL must not exceed 58. LINBQ(LL,C) uses the sub-

program CABS. Also, since the matrix elements are complex, complex addition,

subtraction, multiplication and division routines are tacitly assumed.

ot tiettoi il et MBI N

The second subroutine POT(AC,GS) computes f(¢m) of (53). The variables

in common are

RR1l = sinv - (z -2 cos v
Pq a” (3p%) q

: RR? =-p sin v
g q

2 2 2
RR3 = + + (2 -2
3=p,* 0 ( p q)
RRY = -2
PpPq
BK =k
The arguments of P0T are
) AC = cos ¢m
s = (9,
GS is the only output of the subroutine POT(AC,GS). RKl, KR2 and AC are com-
bined to give t_ of (50). RR3 and RR4 are used to find qu. When in (53)

D) ti+d2 is much larger than 1/4, the argument of the logarithm becomes close

to one. Then, the series expansion for log(l+x} could possibiy have been
used in the subroutine POT(AC,GS), but was not. The subroutine POT(AC,GS) uses

the subprograms ALOG, SIN, COS, CMPIX, ABS, and SQRT.
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First of all, the main program reads the punched card data and then
prints it to be certain that it was entered correctly. The constants n and ]
are inserted just after statement 47. The DO loop 2 puts ¢j appearing in
(46) into ANG(J) and cos ¢j in AC(J). Tne DO locp 10 puts ﬁ cos (n-l)¢3,

b1

J running from 1 to NPHI, in CSM(1) through CSM(NFPHI), 3 cos n ¢j in CSM(NPHI+1)

through CSM(2*NPHI), and ﬁ cos (n+1)¢j in CSM(2*NPHI+1) through CSM(3*NPHI).
The nested DC loops 16 and 17 compute the Gn of (52). Actually, for the

fixed n appearing in (45), Gn-l’ Gn and Gn+l are needed. All are put in the

linear complex array G. The G, ., &re put in G(1) thrcugh G(NG), G, in G(NG+1)

through G(2*NG), and G 4, in G(2*35+1) through G 3*NG). G is a KG by

n-1
KG array. (KG=2%*N and NG=KG*KG). The complex number Gn_l((J-l)*KG+I) is

for the field point at I and the source in the vicinity of J. In DO looyp 5,
the subroutine POT is called upon to put f(¢K) of (53) snto GS(K). 1If (I=J),
the logarithm ¢ ¢pression of (58) instead of f(¢l) is put into GS{1). The DO

loop 13 performs the summation (52). The outer DO loop 68 obtains the cases

(n-1), n,and (n*1).

1 After the G's are printed by statement 58, the numbers of (41) are in-
serted into the arrays T and TP. The impedance matrix (45) is computed in
the nested DO locps 30 and 31. I and J correspond to the i and j of (42).
The subscripts for Ztt, Z¢t, Zt¢,and Z¢¢ are respectively L1, L2, L3, L4 so
that the impedance matrix with the submatrix arrangement of (25) is put
columnwise into the linear comple: array Z. The nested DO locps 70 and 71
perform the double sum in (45). II corresponds to p and JJ to q.

The logic between statements 84 and 89 is a routine to print Z. The

statement

o ‘E“f@‘fgﬁ- E
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CALL LINEQ (NM2,Z)

inverts the impedance matrix. The admittance matrix now occupying Z is printed

in DO loop 93. The data included at the end of Section A-3 is for a sphere

with
NN =1
N=1
NFHI = 20
BK = 0.3947842

BK is the propagation constant for a radius of 0.2 wavelengths. The portion
of the data defining the geometry of the sphere was actually computed and
punched on cards by a short auxiliary computer program.
If N or NPFHI is too large, the dimension of svae arrays smst be increased.
All the arrays whose dimension 2epends upon N or NPHI are listed below.
COMPLEX Z(NM2*#2), GS(NPHI), G(12%N*N)
DIMENSION VS(N*2), sv(n*2), cv(N*2), zS(N*x2),
R(N*2), ANG(NPHI), AC(NPHI),

CSM(3*NFHI)

Here, as in the program,

NM2 = 2%(N-1).
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CALL LINEQ (NM2,Z)

inverts the impedance matrix. The admittance matrix now occupying Z is printed

in DO loop 93. The data included at the end of Section A-3% is for a sphere

with
NN = 1
N=10
NFHI = 20
BK = 0.3947842

BK is the propagation constant for a radius of 0.2 wavelengths. The portion
of the data defining the geometry of the sphere was actually computed and

punched on cards by a short auxiliary computer program.

All the arrays whose dimension 2epends upon N or NPHI are listed below.

COMPLEX Z(NMe##2), GS(NPHI), G(12*N*N)
DIMENSION VS(N¥2), sv(n*2), cv(N*2), zS(N*2),
R(N*2), ANG(NPHI), AC(NPHI),

CSM(3*NPHI)

Here, as in the program,

N = 2%(N-1).

If N or NPHI is too large, the dimension of soane arrays” nust be increased.

PRy




A-3.

The computer program

//REV1T0O Jon (00344EE+11403),'MAUTZ,,JDF* MSOLEVFL=]

// kXEC FURTGCLG,PARM.FDRTz'MAP‘.PARM.LKED=‘!REF'
//FORT ,SYSIN DO =

20

12

10
11

18

14

21

SURRDUTINE LINFO(IL «C)
COMPLEX Cl1)oSTNR,ST,ST,S
DTMENSIOM LR(5R)
DO 20 §1=}),LL
LR{TI)=1

CONT INUE

M1z20

DY 18 M=],LL

K=M

00 2 1=M,LL
KlzMl+1l

K2=M]+K
lF(CAHS(C(Kl’)’CA“S(C(KZ)’) 7e2e6
K=]

CUNT INUE
LS=LR{M)
LRIM)=LRIK)
LR(K)=LS

K2=M1+K
STOR=C(K2)

J1=0

DN T J=1,LL
Kl=J1+K

K2=Jjl+M
$STO=C(K1)
C{K1)=C(K?)
CIK2)=STO/STUR
J1=J1+LL

CUNT INUE

Kl=M]l+M
Ci(K1)=1,/5TOR

07 11 I=1.LL
TFLI=M) 12,411,112
F.l1=Ml+1

5T=C(K1)
ci(kl)=o0,

Jl=0

D0 10 J=1,LL
Kl=Jl+1]

K2eJlem
CIK1)=C(KL1)=C(K2)*ST
J1=Jdl+LL
CONTINUE
CONTINUF
Ml=Ml+LL
CONTINUE

J120

00 9 J=1,LL
IFEJ=LR(J)) 14,8,12
LRI=LR(J)
J2={LR)=-1)=LL

N 13 1=1,L1L
K2xJ2+1

Kl=Jdlel

S=C(K?2)
CiK2)=CiK]1)
CiKl)=S

- ——— = = — SRR s i,
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CONTINUE

LR{J)=LR(LRY)

LRILRY)=LRY ‘
IF(J=LR({J)) 14,8414
Jl=Jl+LL

CONT INUE

RETURN

END

SUBROUTINE POT(AC.GS)
CUMMON RR1,RR2,RR3,RR4,4RK
COMPLEX W3,Wh oGS 3
YS=RR1+AC*RR? )
Y=ABS(YS) .
RD=RR3I+RRL&*AL
RK=BK%®SORT(RD)

D22RD~Y=y

Yi=zvY=-,25

Y2=Y+.25
R1=SCRT(Y1=xYi+N2}
R2=SORT(Y2%Y2+D2) .
IF(Y1) 6,77

TIN=2,%ALOG((~-Y1+R]1)®(Y2+R2)/D2)

GO T0 8

TIN =22, %ALOG((Y24R2)/(Y1+R1))

SN=SIN(RK)

CS=COS(RK)

S=BK-RK*TIN

W3=CMPLX(CSy~SN)

Wo=CMPLX({TIN,=S)

GSsW3*We

RETURN

END

COMMON RR1,RR2,RR3,RR4,BK

COMPLEX A3,A4,2(33464),6S5(40)4,G(4R00)

DIMENSIONVS{60) 4SVI60) +sCVIB0) 425160 4RIK0)$ANG(40) 9AL («0) 4CSM(120) ¢
DIMENSION TP(4)Tl4)JK(4)

REWIND 4

READ(1¢51+END=S2)NNoNoNFHT 4 RK -
FORMAT(3134E14.7)

KG=2*N

READ(1,453)(VS(J)ed=1l,+KG)

READ(1+53)(2S5(J)eJ=1.K0B)

READ(1+53)(R(J)9JI=1,KGI}

FORMAT(10F8.4)

WRITE(3+54)NNNNPHI BK

FORMAY (1X/7% NNx% o134 Nx',13," NPHI=?,13,' BK=?4El4.7)

FORMAT(1X/* VS?Y)

FORMAT(1X/* 1S¢)

FORMAT(1X/* R?)

WRITE(3,55)

WRITE(3446)(VS(J)oJ=14KG) : "
FORMAT(1X410FR.4)

WRITE(3.56)

WRITE(3,46)(ZS(J)4J=1,KG) »
WRITE(3,57)

WRITE(3446)(R(J)ed=14KG)

DO 47 J=]1.KG

SViJ)=SIN(VS(J))

Cv{JI1=COS(VS(J))

CONTINUE




P1=23,141593

€ETA=376,707
NMzN~1
NM2=NM*2
NZ=NM2ENM2 '
NG=KG¥KG
M5=NN+2
M&=NN+4
FM=NN
FM22NN®NN
DP=P /NPHI
00 2 JUslyNPHI
ANG(J)=(J=.5)*xDP
AC(J)=COS(ANG(J))
2 CONTINUE
M3=0
DO 10 MM=MS M6
MlzMM=3
M2=MI%RNPH]
DO 11 K=) NPHI
Kl=M2+K
CSM{KL1)=DP*COS{MI*ANG(K ) )
11 CONTINUF
M3zM3+]
10 CONTINUE
CALL CLOCK(I1,12)
WRITE(3,99)]11,.12
99 FORMAT(1X,217)
D0 16 J=l4KG
AA=DPxR{J)%,5
DG 17 1=1,KG
23=28{(J)=25(1)
RRI=IV(JIRREII4CV(J)*23
RR2=="V(JI*R(])
RRI=R(JI*R(JI+R(II*R(1)+23523
RRG4=z=2 ,%R({J)*R(])
21 DC 5 K=2,NPH1
CALL POT(AC(K)6GSIK))
5 CONTINUE
IF(I~J) T+8,7
B X=R(J)*DP
XX=SORT( 1e/716.4X%X)

Wiz(2.8X®ALOG((4254XX)/X )+, S*ALOGI(X+XX)/,25))/AA

W2a=HBK
GS{1)2W14(0eel.)*W2
GO TO 67
T CALL POT(AC(1).GS(1))
67 M3=(J-1)%KG+]
0O 68 MM=],3
MlaMM=]
Ma=MI2NPH]
M2sM12NG+M3
G(M2)=0.
00 13 K=]l,NPHI1
K2=K+M&
GIM2)=GIM2)+GSIK)ISCSMIK2)
13 CONTINUE
68 CONTINUE
17 CONTINUE
16 CONTINUE
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CALL CLOCKII1,12)
WRITE13,99)11,12
WRITE(3,48)
48 FORMAT(1X/¢ POYENTIALS FROM THE CIRCULAR RIBBONS OF CHARGE?')
58 WRITE(3,64)(G(K)+KxlyNG)
64 FORMAT(IX/{1Xs10Gl1l.%&))
CALL CLOCK(I1,12)
WRITE(3,99)11,12
TP(1)=,.%
TP(2)=2.5
TP(3)==~,5
TP(4)a=,5
Ti1)=,125
Ti2)=,375
T(3)=,375
T(6)=,125
CA=BK*ETA
CO=CA/BK/BK
DO 30 J=1l,NM
Jls2%({J-1)
JLs{J=1)%=NM2
03 31 I=1.NM
LisJgL+]
L2=L1+NM
L3sL 1 +NM2ENM
LéexL3+NM
ZitL1)=0.
Z(L2)=0.
2(L3)=0,
2{L4)=0,
11=2%(]-1)
DO 70 JJ=l,4
J2sJl+dd
KAl=({J2~1)*KG
KB1=XAl+NG
KC1=KR1+NG
DO 71 11=1,4
12=11+11
SS=SV(12)2SV(J2)
CC=CV(12)2CV(J2)
KA2=2KAl+12
KB2=KBl+12
KL2sKC1l+12
A= ,5%(GIKC2)+G(KA2))
Abz 5% (GI(KC2)-G(KA2))
74 2(LYI=Z(L1)4(CASTIIIIST(JI)®{SS®A3+CCRGI(KB2) )=CO*TP(11)*TP{JJ)I®G(K
132’)“0.01.’
ZIL2)=2(L2)+CARSVIJ2)ST(IT)%T(JJ)*A4=FMRCOSGIKB2)2TII1)*TP{JJI/RI(IT
12)
ZIL3)=2(L3)=CARSV(I2)2T(I1)12T(JI)SAG+FEMRCORG(KR2)ETPITE)*T(IJI/RY
12) '
Z(Le)=2 (L) +(CASAI-FM25CO/R(T12)/R(J2V*GI(KB2))2TIIT)%T(JJ)®i0e 1)
71 CONTINUE
70 CONTINUE
31 CONTYINUE
30 CONTINUE
CALL CLOCK(Il.,12)
WRITE(3,99)11.12
86 JK(1l)=]
JK{2)=N

¥
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JK{3)=NM2ENM+]
JK(4)=gK(3)+NM
DO 89 J=1.4
Kl=JgK{J)
WRITE(3,49)J
49 FORMAT(1IX/® Z2,11)
DO S0 1=]1,NM
K2=K14+NM=-1
95 WRITE(3,P8)(2(K)K=2K1,K2)
88 FORMAT(1X¢12Gl1l.4)
K1=K1+NM2
90 CONTINUE
89 CONTINUE
33 WRITE (4)(2(1)s1=1,NZ)
CALL CLOCK(I1,12)
WRTTE(3,99) 11,12
CALL LINEC(NM2,2)
CALL CLOCK{I1,12)
WRITE(3,99) 11,12
DD 93 J=1l,4
Kl=akiJ)
WRITE(3,24))
24 FORMAT(1X/® Y*,11)
DO 92 I=]1,NM
K2=K]1+NM-1
96 WRITE(3,88)(2(K)K=K1l,oK2)
Kl=K)1l4+NM2
92 CONTINUE
93 CONTINUE
34 WRITE (4)(2(1j41=1,N2)
CALL CLOCK(I1,12)
WRITE(3,99)11,12
60 T0 50
52 STOP
END
/%
N 1/G0.FTO4F001 DD DSNAME=EEQ0O034.REV,DISP=0LD.UNiT=2314, X
1/ VOLUME=SER=sSUO0Q04:DCB={RECFM=aV ,BLKSIZE=1800,LRECL=1796)
/7/G0.SYSIN DD =
001010020 0.3947842E+00
1,4923 11,3352 11,1781 1.0210 0.8639 0.7069 0.5498 0.3927 0.2356 0.,0785
-0,0785 =0,2356 =0,3927 =0.5498 «0,7069 ~-0.8639 ~1,0210 -1,1781 ~1,3352 ~-1.4923
0.0098 0,0879 0.,2423 0.,4691 0.7627 11,1158 1.,5199 1.,9650 2.4400 2.,9334
3,432 33,9262 4.4012 &.8463 5,2506 5.6035 S5.8971 6.1239 66,2782 6.3564
0.26497 0.7431 1,2181 1.6632 2,0673 2,420¢ 2.7140 2.,9408 23,0951 13,1733
3,1733 33,0951 2.9408 2.T7140 2.4206 2.,0673 11,6622 11,2181 0,7431 0.2497
/%
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